skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kushner, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. “The science we need for the ocean we want” (IOC, 2020) may be more science than we can afford unless we devise additional cost-​effective ways to produce it. Much of the science we need may require local knowledge and skills that are difficult to generate at scale. Global problems, such as ocean acidification, may be lessened by using site-specific solutions that require knowledge of local oceanography. Similarly, implementing solutions to local problems, such as pollution and fisheries sustainability, will require local knowledge and skills that cannot immediately be drawn from global capacity. Supplying the know-how for inexpensive staff and scientific gear to achieve these solutions may be part of capacity building and sharing in the UN Ocean Decade. 
    more » « less
  2. Abstract Protection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide. We quantify the stability of reef fish abundance from populations to metacommunities, considering responses of species and functional diversity including thermal affinity of different trophic groups. Overall, protection mitigates adverse effects of marine heatwaves on fish abundance, community stability, asynchronous fluctuations and functional richness. We find that local stability is positively related to distance from centers of high human density only in protected areas. We provide evidence that networks of protected areas have persistent reef fish communities in warming oceans by maintaining large populations and promoting stability at different levels of biological organization. 
    more » « less
  3. Hull, J. Joe (Ed.)
    Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases (HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not been explored. Here, we demonstrate that SFN consumed in the diet inhibits the activity of HDAC enzymes and slows the development of the generalist grazerSpodoptera exigua, in a dose-dependent fashion. After consuming SFN for seven days, the activities of HDAC enzymes inS.exiguawere reduced by 50%. Similarly, larval mass was reduced by 50% and pupation was delayed by 2–5 days, with no additional mortality. Similar results were obtained when SFN was applied topically to eggs. RNA-seq analyses confirm that SFN altered the expression of thousands of genes inS.exigua. Genes associated with energy conversion pathways were significantly downregulated while those encoding for ribosomal proteins were dramatically upregulated in response to the consumption of SFN. In contrast, the co-evolved specialist feederTrichoplusia niwas not negatively impacted by SFN, whether it was consumed in their diet at natural concentrations or applied topically to eggs. The activities of HDAC enzymes were not inhibited and development was not disrupted. In fact, SFN exposure sometimes acceleratedT.nidevelopment. RNA-seq analyses revealed that the consumption of SFN alters gene expression inT.niin similar ways, but to a lesser degree, compared toS.exigua. This apparent resistance ofT.nican be overwhelmed by unnaturally high levels of SFN or by exposure to more powerful pharmaceutical HDAC inhibitors. These results demonstrate that dietary SFN interferes with the epigenetic machinery of insects, supporting the hypothesis that plant-derived HDAC inhibitors serve as “epigenetic weapons” against herbivores. 
    more » « less
  4. Zhang, Jiahua (Ed.)
    Abstract As on land, oceans exhibit high temporal and spatial temperature variation. This “ocean weather” contributes to the physiological and ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized, especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.5 m) across different zones of latitude. We collated hundreds of in situ, high temporal-frequency ocean temperature time series globally to produce an intuitive measure of temperature variability, ranging in scale from quarter-diurnal to annual time spans. To estimate organismal sensitivity of ectotherms (i.e. microbes, algae, and animals whose body temperatures depend upon ocean temperature), we computed the corresponding range of biological rates (such as metabolic rate or photosynthesis) for each time span, assuming an exponential relationship. We found that subtropical regions had the broadest temperature ranges at time spans equal to or shorter than a month, while temperate and tropical systems both exhibited narrow (i.e. stable) short-term temperature range estimates. However, temperature-dependent biological rates in tropical regions displayed greater ranges than in temperate systems. Hence, our results suggest that tropical ectotherms may be relatively more sensitive to short-term thermal variability. We also highlight previously unexplained macroecological patterns that may be underpinned by short-term temperature variability. 
    more » « less
  5. Monitoring is a crucial tool for measuring the progress and success of environmental policies and management programs. While many studies have evaluated the effectiveness of biodiversity sampling methods, few have compared their efficiency, which is crucial given the funding constraints present in all conservation efforts. In this study we demonstrate how existing analytical tools can be applied to (i) assess the relationship between sampling effort and resulting confidence in biodiversity metrics, and (ii) compare the efficiency of different methods for monitoring biodiversity. We tested this methodology on data from marine fish surveys, including: roving surveys within permanent areas, randomly placed belt transects, and randomly placed transects conducted by citizen scientists using a reduced species list. We constructed efficiency curves describing how increasing effort spent on each method reduced uncertainty in biodiversity estimates and the associated ability to detect change in diversity. All programs produced comparable measurements of species diversity for all metrics despite substantial differences in the species being surveyed by each method. The uncertainty of diversity estimations fell faster and reached a lower level for the roving diver method. Strikingly, the transect method conducted by citizen scientists performed almost identically to the more taxonomically resolved transect method conducted by professional scientists, suggesting that sampling strategies that recorded only a subset of species could still be effective, as long as the excluded species were chosen strategically. The methodology described here can guide decisions about how to measure biodiversity and optimize the resources available for monitoring, ultimately improving management outcomes. 
    more » « less
  6. ABSTRACT MotivationHere, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables IncludedThe database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and GrainSampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and GrainThe earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample‐level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of MeasurementThe database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Formatcsv and. SQL. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026